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Abstract— We present an automated framework for detecting
Parkinson’s disease (PD) from videos collected through a scal-
able online platform. We analyzed 1380 videos of age-matched
participants performing four standard motor tasks from the
MDS-UPDRS. Our proposed framework leverages multiple
deep neural networks to temporally and spatially segment the
videos as well as magnify relevant motions. Frequency domain
representations of the resulting data are then classified using
supervised learning. Overall, the proposed framework achieves
an accuracy of 82.5% when discriminating between those with
PD and those without, and 61.8% when discriminating between
those with PD with treatment, with PD without treatment,
and those without PD. These results increased up to 91.8%
and 73.5%, respectively, when combining the predictions of
multiple models. To understand the contributions of each part
of our framework we perform systematic ablation studies.
We also compare between motion features based on pixel,
phase-based and deep learning-based representations. This
work demonstrates the possibility of identifying PD cues in
challenging real-life settings with inexpensive webcams.

Index Terms— Parkinson’s, Deep learning, Online videos,
Segmentation.

I. INTRODUCTION

Parkinson’s disease (PD) is a neurological disorder that
affects over 10 million people worldwide [1]. PD is char-
acterized by random, involuntary, and non-rhythmic move-
ments of the body [2], [3], [4]. Many individuals only show
subtle signs of tremor and do not get diagnosed with PD
until the disease has progressed significantly. Even though
there is no cure for PD, the use of certain drugs can help
manage the symptoms. However, the doses of these drugs
need to be carefully tuned based on the disease progression
to minimize the side-effects [5]. This assessment process
requires in-person visits with a neurologist who assesses
the patient through physical examination. However, it is not
uncommon that patients’ symptoms are not clearly visible
during the specific time of the visit. Furthermore, traveling
back and forth to the clinic is often difficult for patients
with movement disorders. These factors can lead to sparse
and potentially inaccurate assessments. This inspired us to
develop a novel approach that leverages machine learning
to recognize PD symptoms using videos collected with their
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consent via a webcam from their own home. We believe
video-based assessment can be a low-cost, convenient and
scalable solution that provides access to care more frequently
and remotely.

Unlike many other diseases, there is no objective di-
agnostic tool for PD. To get evaluated, patients need to
perform tasks from the Movement Disorder Society - Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) [6] in front
of a neurologist or an expert assessor. During the evaluation,
the physician looks for different cues of PD such as how
smoothly they are performing different tasks, how many
breaks they need to have, how accurately the patient is
performing the task etc. When considering motor tasks, the
expert assessor looks for changes in motion, speed, tremor,
breaks, rigidity, and other involuntary non-rhythmic motions
which are very indicative of PD. Due to their relevance, this
work focuses on the automated analysis of these type of
motor tasks.

Computer vision analyses of gait [7] and analyses of
wearable data [8] have already shown promise for the de-
tection of PD during motor tasks. But there are still many
challenges that need to be addressed [9]. In particular, Espay
et al. [9] identify one of the biggest challenges as finding
“objective biomarkers that improve the longitudinal tracking
of impairments.” We believe ubiquitous technologies such
as low-cost cameras and computer vision algorithms offer
opportunities to address this. In particular, we propose an
automated pipeline for assessing PD symptoms from videos
collected through an online tool from users homes. This
approach comes with a unique set of challenges that have
not been addressed by prior work. First, videos collected
online often have poor resolution, making it difficult to
recover subtle motions. Second, online recordings can be
quite heterogeneous with large differences in illumination,
background activities and body position of the subject [10].
Third, relevant PD cues may only be captured during a short
period of time and/or by a small portion of the frame, leading
to large amounts of unnecessary information. Finally, in a
remote context it may be more difficult to guarantee that
patients perform specific tasks, such as those in the MDS-
UPDRS [6], while being in front of a camera and without the
direct guidance of an expert. This paper addresses the afore-
mentioned challenges by leveraging recent advancements in
computer vision and motion magnification techniques [11],



Fig. 1: Overview of our framework: 1) frames are extracted from a video, 2) a CNN-based classifier identifies the frames
in which participants are performing each task, 3) a body segmentation algorithm removes the background, 4) motion
magnification is applied and magnified pyramids are generated as the feature representation, 5) frequency components are
generated by applying Fourier transformation, and 6) an SVM classifier is used to recognize PD cues.

[12], [13]. In particular, we analyze 1380 videos from 345
age-matched (between 55 and 75 of age) individuals per-
forming 4 motor tasks involving hands from MDS-UPDRS.
We propose a processing pipeline and evaluate it in a 2-class
classification problem (PD = 206, and non-PD N = 139) as
well as 3-class classification problem (PD with medication
N = 87, PD with medication N = 119, and non-PD N = 139).

Our contributions can be summarized as follows. First, we
propose a novel pipeline for detecting PD-related movement
disorder from videos. This framework includes components
to help find and filter relevant motion information. Second,
we evaluate our framework on a 2-class classification prob-
lem (non-PD vs PD) and a more challenging and clinically
relevant 3-class classification problem (non-PD, PD on medi-
cation, PD without medication). Finally, we perform ablation
tests to systematically compare different segmentation and
feature representation approaches. The remainder of the pa-
per reviews relevant work on the automated detection of PD,
the database we use as well as the proposed framework, and
provides a thorough analysis and discussion of the results.

II. RELATED WORK

A. Automated PD Detection Tools.

The application of computers in medicine has led to the
development of novel approaches for detecting PD using
audio signals [14], [15], [16], [17], [18], wearable sensor
data [19], [20], and video data [21], [22], [23], [24]. Arora
et al. [25] used a smartphone application to assess voice,
posture, gait, response time, and finger tapping. In a study
with 20 participants, they were able to discriminate be-
tween PD and non-PD (with sensitivity = 96.2% and speci-
ficity = 96.9%). Sahyoun et al. [26] presented a smartwatch-
based application, PakNosis, which aimed to measure PD
symptoms remotely using motion tests and qualitative ques-
tionnaire. Tzallas et al. [19] built PERFORM, a smart-watch
based algorithm which processes the sensor signals to help
professionals monitor the severity of PD-related symptoms
such as freezing of gait. Lonini et al. [20] studied the value of
using wearable sensors at different body locations and used
convolutional neural networks to recognize characteristics of
PD during regular daily activities. Although smartphones and
wearable sensors are common, they often require office visits

for measurements [27], [23] and sensors and smartphone
are inaccessible to individuals. In contrast, video recording
devices are ubiquitous and non-invasive. Additionally, video-
conferencing based virtual office visits are getting popular in
telemedicine [28]. Uhrı́ková et al. [29] proposed a method to
detect motion disorder in video data using Fourier transform
and frequency analysis. Orphanidou et al. [30] used ac-
celerometer data from eight participants with PD to detect the
freezing of gait events. They applied seven different machine
learning algorithms and were able to predict the freezing of
gait with over 90% accuracy. Bandini et al. [31] analyzed
facial expressions of 17 healthy and 17 PD participants to
detect PD-related facial hypomimia. They found that the
disgust and anger facial expressions were the most impaired
in participants with PD. Meigal et al. [32] proposed a motion
video-based PD symptom tracking method. Their experiment
shows that video cameras provide reliable capture quality for
PD patient motion video tracking.

B. Feature Representations.

Researchers have explored a wide variety of methods
to measure and magnify motions in video. Optical flow
is the estimation of “apparent velocities of movement of
brightness patterns in an image” [33]. As with many tasks in
computer vision, deep learning-based architectures currently
provide the best results on flow estimation problems [34].
Computational methods can not only be used to measure
flow but also to magnify it. Some of the early methods
for motion magnification involve estimating motion trajec-
tories using Lagrangian methods which typically involve
performing video registration, estimation and maximization
steps, clustering of trajectories, and dense optic flow field
interpolation [35]. Phase variations of a complex steerable
pyramid have been found to capture a good representation
of motion in video [12]. Some other approaches have shown
that phase-based representations are good at magnifying
subtle motions [11] which is important in our applications as
many of the motions of interest (e.g., shaking). In addition,
pyramid representations can be used to capture motions at
different spatial scales. The recent application of DNNs to
the task of motion magnification have enabled source specific
magnification [13] that reduces the artifacts associated with



(a) Task 1. Finger tapping (b) Task 2. Closing and opening

(c) Task 3. Pronation and supination (d) Task 4. Holding still

Fig. 2: Participants of our study performed four different
hand-motor tasks from the MDS-UPDRS [36]. a) Tapping
the index finger and thumb 10 times. b) Opening and closing
their hand 10 times. c) Rotating their palm 180 degrees from
upward facing to downward facing. d) Holding arms and
hands outwardly at a 90 degree from the body. Tasks 1-3
were repeated with both hands.

magnifying motions unrelated to the source of interest.

III. DATASET

This work uses an existing dataset collected using the
PARK framework (available at www.parktest.net) [36] which
allows participants to record videos of themselves and trans-
fer them to the cloud for analysis. Participants were asked to
perform seven tasks from the MDS-UPDRS, which includes
two speech tasks, one facial expression task, and four motor
tasks. As we are interested in motion-based analyses, we
have selected only the hand-motor tasks (i.e., tasks related
to hands) for our experiments. These tasks are:

1) Finger tapping: Participants tap their index finger and
thumb 10 times as fast as possible (see Fig. 2a).

2) Closing and opening: Participants make a fist and then
open and close the hand for 10 times as fast as possible
(see Fig. 2b).

3) Pronation and supination: Participants stretch out their
arms and flip their palms up and down for 10 times
(see Fig. 2c).

4) Holding still: Participants stretch out their arms and
hold the position for 10 seconds (see Fig. 2d).

The dataset includes videos of 345 individuals performing
each of the four different hand movement tasks, totalling
1380 videos. The mean duration of the videos is 9.7 seconds
(sd = 6.1). As the severity of PD-related symptoms is highly
dependent on medication, participants were asked to self-
report the time of their last intake. For part of our analysis,
we considered participants who took their medication be-
tween the previous 45 (kick-in) and 180 (wore-off) minutes
as participants with PD under the influence of medication.

All participants were 50 years old or older. The mean age
of the PD participants was 66.8 (sd = 8.1), and the non-PD
participants was 63.3 (sd = 5.7). PD recruitment was done
via online forums, in-person clinic visits, support groups,
mailing lists from the department of Neurology at University

TABLE I: The Demographic Composition of our Dataset.

Non-PD PD
With Med W/O Med

N 139 87 119
Female/Male 91/48 56/31 33/86

Age (mean/std) 63.3(5.7) 66.6(11.6) 66.9(4.5)
Country(US/other) 122/17 83/4 94/25

Years since
diagnosed
(mean/std)

N/A 8.7(5.1) 6.4(9.2)

of Rochester, and Michael J. Fox foundation. We sent emails
to those who were already diagnosed with PD. For non-PD
we recruited participants from the local hospitals, Facebook
ads., and Amazon Mechanical Turks. Each participant was
compensated with a $50 Amazon gift card. After performing
the tasks participants completed several surveys regarding
their demographics, platform usability, and medication in-
take. We analyzed those participants who mentioned their age
50 or more. Table I provides a summary of the population.

IV. METHODS

This section describes the proposed framework which
includes the segmentation, feature representation, and classi-
fication tasks. To normalize the input to the system, all of the
videos were preprocessed to a fixed frame rate of 15 fps and
a resolution of 256×256 pixels. Figure 1 shows an overview
of the proposed framework.

A. Segmentation

When inspecting the videos, we noticed that they con-
tained information that was not associated with the relevant
hand-motor task. For instance, several participants were
talking to other people (e.g., caregivers, family members),
adjusting the camera or their sitting positions, and/or inter-
acting with the recording interface (e.g., pressing “Start”
and “Stop” buttons, reading instructions). Even when the
participants were performing the relevant task, the hand often
occupied a small region of each frame. As a result, a large
amount of non-relevant hand-motor information was also
captured in the videos. To help find relevant information,
we applied different segmentation techniques.

1) Temporal: To help detect frames in which the per-
son was performing the relevant hand-motor task, we im-
plemented a Convolutional Neural Network (CNN) based
classifier that detected relevant frames. For example, a frame
where a hand is visible would likely be associated with a
task and thus should receive a higher probability score than
a frame without a hand present. To train the classifier, we
used a semi-supervised approach. In particular, we created
a dataset consisting 55,200 images from the videos. For
the negative class (where participants were not performing
the task), we took the first 10 and last 10 frames from the
videos. For the positive class, we took 20 frames from the
middle of the videos. The first three and last three frames
of these 20 frames were manually inspected to ensure that
they belonged to the positive class. Therefore, from each
video we obtained a total of 40 images which we used to



Fig. 3: Architecture of the neural network to temporally seg-
ment relevant hand-motor movements. conv = convolutional
layer, pool = max. pool layer, fc = fully connected layer.

train a CNN classifier that detects relevant hand-motor tasks.
While there are many potential choices for the network, we
selected a simplified version of the VGG16 architecture [37]
which worked adequately in practice (see Fig. 3). A different
classifier was trained for each of the different tasks. We then
used a stochastic gradient descent optimizer from the Keras
API1 to train the classifier. When a video of a particular task
is given as an input, the classifier outputs the probability
of the positive class for each frame. To enforce temporal
smoothness, we applied a running mean of the output from
10 consecutive frames. For the remainder of the analysis, we
only considered frames for which the likelihood was above
a certain threshold (0.5 in our case).

2) Spatial: To help minimize non-relevant background
information, we used the body segmentation tool from
Microsoft Teams2. This body segmentation tool separates
the upper body from background information using a CNN
encoder-decoder architecture (see Fig. 1). For faster compu-
tation, this model utilizes the shortcut method [38], residual
connections [39], low dimensional embedding [40], and filter
grouping [41], [42]. As a post-processing step, this tool
performs blob analysis, temporal and spatial smoothing.
The network was trained using CNTK3 and Tensorflow4.
The data used for the training of their model included
image-mask pairs of people in different poses in front of
a green screen, and web-search images with alpha channels.
For additional data, certain augmentation methods such as
mirroring, scaling, and rotating were utilized.

B. Feature Representations

After performing the temporal and spatial segmentation,
we extracted feature representations from each of the video,
and computed their variation over time using the fast Fourier
transform (FFT). To understand the potential value of dif-
ferent representations, we implemented and compared three
types of representations.

1) Unmagnified Raw Pixels (Pixel): Our baseline feature
representation is unmagnified raw pixels. This involves con-
structing a timeseries for each pixel across the length of the
video, xi,j , where xi,j,t is the value of pixel at position i, j
at time t. We then compute the frequency components for
each pixel vector xi,j using the FFT. The resulting frequency
spectra for all pixels are then averaged.

1https://keras.io/
2https://products.office.com/en-us/microsoft-teams/group-chat-software
3https://github.com/microsoft/CNTK
4https://www.tensorflow.org/

2) Phase-based Magnified Features (Phase): Our next
baseline feature representation is a phase-based represen-
tation that has been shown to be effective at capturing
subtle motions, such as those related to heartbeats or respi-
ration [12]. In this case, we magnified phase variations of a
complex steerable pyramid over time. The complex steerable
pyramid is a filter bank that breaks each frame of the video
C(t) into complex-valued sub-bands corresponding to differ-
ent scales and orientations. In particular, the basis functions
of this transformation are scaled and oriented Gabor-like
wavelets with both cosine- and sine-phase components that
can separate the amplitude of local wavelets from their
phase. The phases are temporally bandpass filtered to isolate
specific temporal frequencies relevant to our application
(cutoffs: 0.5-2.5 Hz) and remove DC components. These
cut-off frequencies were chosen heuristically, based on the
frequencies of motions observed when watching a set of
videos from the dataset. Finally, we compute the frequency
components for each of the magnified phase features and
averaged them.

3) Deep Neural Network based Magnified Features
(Deep Mag): Traditional phase-based magnification uses
frequency properties to separate the target signal from noise.
All frequencies in the band of interest (0.5-2.5 Hz) will
be magnified equally. However, if the signal of interest is
at a similar frequency of another noisy signal, the phase-
based magnification approach would magnify both and cause
numerous artifacts [13] (see Fig. 5). In this work, we applied
a component specific deep neural network based magnifi-
cation. Recent work proposed the use of neural networks
for the task of motion magnification [13]. We apply the
same source specific neural network-based architecture and
leverage a pre-trained network from [13] to provide initial
network weights. Fig. 4 shows the architecture of the neural
network.

As this approach is supervised, we fine tuned the network
on data from the tasks used in our system. In particular,
we captured 18 videos from seven individuals (not featured
in the PARK dataset) performing the four tasks. To capture
ground truth labels for the gross arm motion, participants
wore a wearable sensor5 on both hands that captured 3-axis
accelerometer data. To aggregate the three axis, we took the
absolute values across them and then computed the addition
of both hands. Using this approach, any hand movement
in the video corresponded to changes in the ground truth
signal and, therefore, the model is able to magnify motion
components associated with hands or arms movements.

Similar to the phase-based approach, we magnified phase
variations of a complex steerable pyramid over time. The
basis functions of this transformation are scaled and oriented
Gabor-like wavelets with both cosine- and sine-phase com-
ponents. As can be seen in Fig. 5 this did not produce the
same artifacts as the phase-based approach.

5https://www.empatica.com/research/e4/



Fig. 4: Architecture of the neural network to extract magni-
fied features. The input of the network is a complex steerable
pyramid generated from a recording. conv = convolutional
layer, pool = max pool layer, fc = fully connected layer.

C. Classification

After extracting frequency information from each of the
feature representations, we then used Support Vector Ma-
chines (SVMs) with Radial Basis Function kernel to dis-
criminate the different classes. In particular, we considered
a 2-class problem in which we discriminate PD and non-PD
participants, and a 3-class problem in which we discriminate
PD with treatment, PD without treatment, and non-PD. The
hyper-parameters of the SVM were selected using a linear
grid search approach (C = [0.01−20], γ = [0.001−5]) with
step size = 0.1 and maximizing the development set accuracy.
After applying the classifier we computed the metrics for
evaluation. All the metrics were computed from 10-fold cross
validation over five iterations.

V. RESULTS

This section provides the accuracy scores when using each
of the four different tasks and the different feature represen-
tations. We then investigate the best performing combination
of segmentation steps and feature representations via an
ablation approach.

Table II shows the accuracy of the two-class classification
(PD vs. non-PD) where the columns “None” represents no
segmentation, “Temp.” represents only temporal segmenta-
tion, “Spat.” represents spatial segmentation, and “Temp. &
Spat.” represents both applied in sequence. The bar plots
above the tables show the same accuracy scores for a better
visualization. The best accuracy scores are highlighted in
bold (see Table II). In our dataset 59.7% participants had
PD and therefore a naive baseline accuracy that always
predicts the most frequent class would be of 59.7%. As can
be seen, the worst performing feature representation is the
raw unmagnified pixels which yielded a prediction perfor-
mance close to the baseline. Considering the unmagnified
pixel feature representation, the best accuracy (69.8%) was
obtained for Task 1 with temporal and spatial segmentation.
The phase-based magnification feature representation had
better accuracy than the pixel feature representation (78.3%)
in Task 2 with temporal and spatial segmentation. The best
performance was obtained from the deep neural network-
based magnification representation with temporal and spatial
segmentation. This model yielded the highest accuracy for
all the tasks, yielding 81.1% for Task 1, 82.5% for Task 2,
77.0% for Task 3, and 76.4% for Task 4. Additionally,
it should be noted that temporal and spatial segmentation
yielded better performance in all of the feature represen-
tations compared to each of the segmentations alone. This

Fig. 5: Scanline images after applying segmentation with
three feature representations. On the right column the fre-
quency spectrum generated from each video is shown. Notice
how the phase magnification algorithm results in temporal
artifacts in the scanline.

indicates that our temporal and spatial segmentations were
able to effectively remove non-relevant information from
the data and that both of them contributed to solving the
problem.

Table III shows the accuracy of the three-class classifica-
tion (non-PD, PD with medication, and PD without medi-
cation). In this case, the non-PD group is the largest, thus
predicting the most likely class yields an accuracy of 40.2%.
With pixel feature representation, the classifier performs
as good as predicting the most likely class. Phase-based
magnification feature representation showed better accuracy
than raw pixel feature representation. The best accuracy with
phase-based magnification feature representation was 58.8%
for Task 3 with temporal and spatial segmentation. Similar
to the two-class classification, the deep neural network-
based magnification feature representation yielded the best
accuracy when considering both temporal and spatial seg-
mentation. For each of the tasks, the model yielded an
accuracy of 58.7% for Task 1, 57.9% for Task 2, 62.3% for
Task 3, and 61.8% for Task 4. On average the performance
was around 50% greater than the baseline.

Table IV shows additional performance metrics of the
best performing condition (temporal and spatial segmentation
with Deep Mag). We further combine the four tasks with
a later-fusion approach to have a model that leverages all
the predictions. Specifically, we trained a unique linear
SVM model with the predicted labels from each of the
tasks. With a leave-one-subject-out cross validation, the
accuracy increased to 91.8% and 73.5% for the two-class
and three-class classification problems, respectively. Upon
further investigating the linear model feature weights, we
found that the Task 2 and Task 3 yielded the highest weights,
highlighting their contribution in prediction.

To better understand the difference in performance across
feature representations, Fig 5 shows an example scanline
image of a video after applying temporal and spatial seg-



TABLE II: TWO-CLASS CLASSIFICATION: Average accuracy (%) and standard error bars.
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Pixel Phase Deep Mag

Task None Temp. Spat. Temp.
&Spat. None Temp. Spat. Temp.

&Spat. None Temp. Spat. Temp.
&Spat.

1 65.4 54.4 57.8 69.8 56.4 65.2 60.3 71.9 58.1 69.4 59.9 81.1
2 57.6 58.4 58.8 68.1 52.2 62.8 65.8 78.3 55.5 66.3 70.3 82.5
3 51.5 55.0 62.2 61.9 56.6 59.5 65.1 76.2 55.5 70.1 70.7 77.0
4 58.8 56.3 65.4 67.6 58.7 66.5 64.0 70.7 57.4 67.3 66.3 76.4

TABLE III: THREE-CLASS CLASSIFICATION: Average accuracy (%) and standard error bars.
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Pixel Phase Deep Mag

Task None Temp. Spat. Temp.
&Spat. None Temp. Spat. Temp.

&Spat. None Temp. Spat. Temp.
&Spat.

1 37.3 29.1 36.6 43.7 32.8 33.7 37.0 42.7 35.8 32.3 32.8 58.7
2 25.3 24.3 29.2 35.5 22.4 32.1 37.8 47.3 35.7 42.1 30.9 57.9
3 35.4 36.1 36.2 41.2 32.0 42.7 44.2 58.8 33.5 39.2 31.4 62.3
4 37.2 32.7 34.8 42.3 31.0 30.5 41.4 52.5 36.5 40.0 32.4 61.8

Fig. 6: Frequency distribution of PD and non-PD features after segmentation. Darker color indicates higher power.

mentation. On the right column of Fig. 5 the corresponding
frequency components are shown. As can be seen, the Deep
Mag approach magnifies the high frequency components
of the motion. In this case, PD is characterized by non-
rhythmic, involuntary, and random movements, which should
be visible in the high frequency components. Since Deep
Mag is magnifying the higher frequency components, it is
expected to have better accuracy than phase-based magni-
fication and no-magnification. To further investigate how
Deep Mag magnification is helping the classification process,
Fig. 6 shows the distribution of the frequencies of PD and
non-PD participants. From looking at the pixel and phase-
based feature representations, it is clear that the frequencies

of PD and non-PD are slightly different but difficult to
quantify. In contrast, the Deep Mag feature representation
shows readily observable differences between PD and non-
PD frequencies. In particular, the high frequency components
of the PD participants are magnified and spread.

VI. DISCUSSION AND FUTURE WORK

Leveraging recent advancements in remote sensing and
machine learning, this work explores the possibility of
recognizing hand-motor symptoms of people with PD. We
have proposed a framework composed of multiple deep
neural networks to address some of the main challenges
associated with real-life data recordings. We implemented
spatial and temporal segmentation algorithms that allow



TABLE IV: Performance metrics for the best performing
model (deep neural network-based magnification feature
representation with temporal and spatial segmentation)

Task F1 Accuracy Recall Precision

Two-Class
Classification

1 87.2 81.1 92.5 82.4
2 87.8 82.5 97.3 80.0
3 84.2 77.0 86.4 82.0
4 84.1 76.4 88.9 79.8

Three-Class
Classification

1 56.3 58.6 57.0 55.7
2 59.8 57.9 56.6 63.3
3 65.1 62.3 61.7 68.9
4 64.6 61.8 61.4 68.1

finding relevant information, as well as motion amplification
algorithms to help capture subtle motions. Furthermore, we
have evaluated the proposed framework with a dataset of
1380 video recordings and studied a 2-class classification
problem considering PD and non-PD, and a more challenging
but clinically relevant 3-class problem considering PD with
medication, PD without medication, and non-PD.

Across different experiments, adding temporal and spa-
tial segmentation consistently improved performance. This
suggests that they effectively removed non-relevant infor-
mation which helped boost the signal-to-noise ratio in the
resulting motion signals. These segmentation algorithms can
be considered as an attention mechanism for the classifier.
Considering the standard deviations in the results, however, it
is difficult to assess which task may be more informative. To
address this, we built an additional model that combined the
predictions when considering the different tasks and showed
that Task 2 (closing and opening) and Task 3 (pronation
and supination) were the most relevant. Furthermore, per-
formance was further increased to 91.8% and 73.5% for the
2-class and 3-class problems, respectively.

Among all the feature representations the deep neural
network based magnification worked the best. This was due
to the fact that deep magnification magnified the subtle
motions in the high frequency range (> 3.5 Hz) (see Fig. 6).
Also, the deep magnification model was trained to magnify
the spatially relevant movements in a video, unlike the phase
magnification, which has no spatial perception. Since the
subtle high frequency movements are an indicator of PD,
deep magnification were able represent that adequately.

The training data for deep magnification was col-
lected from healthy and younger participants (ages be-
tween 22 to 40). This is a limitation of the model, since PD-
related tremors were not present in the training samples. This
younger data indicates that the deep learning-based motion
magnification was not targeting PD-related movements. It
simply magnified any motion that was task-related and,
hence, the PD-related random motions were present, they
were magnified. In the future, we plan to augment the
training data for deep magnification with PD participants,
as well as for the general, older population.

We used the accuracy score to select and compare the
best combination of methods. Although the accuracy score
may not be the best metric to describe the performance of a

model, since our dataset is not hugely imbalanced, we used
it to find the best combination of different approaches. In
addition to the accuracy, the precision, recall and F1 scores
for the best model showed strong performance.

For part of the analysis, this paper has considered the
classification of PD and non-PD. However, PD is a progres-
sive disease without a strong binary separation. However, we
believe the proposed framework can be useful in detecting
some of the most extreme cases. Our long-term goal is to
provide a more continuous score of PD severity which would
be consistent. To help address this, we have shown some
results considering non-PD and PD on and off medication.
However, the sample size for each of the groups was signif-
icantly reduced limiting the potential generalization of our
findings. Furthermore, we only collected information of the
type of their medication at baseline which was carbidopa-
levodopa in our dataset. Although carbidopa-levodopa can
reduce PD-related symptoms, it can also induce other side-
effects such as dyskinesia, which may again show symptoms
and could have had an impact on our results.

The framework presented in this paper is an initial explo-
ration and should not be used as a clinical diagnostic tool.
However, we feel that the framework could be useful for
clinicians who are unable to see all of their patients everyday
in order to obtain an objective assessment of the patients’
tremors. The framework could look for gradual progression
of subtle tremors and, if and when appropriate, suggest a
referral to see a neurologist. In addition to PD, we believe
the the techniques described in this paper could potentially be
relevant to develop tools to identify other potential movement
disorders (e.g., essential tremor and Huntington’s disease).

VII. CONCLUSION

This paper proposes and evaluates a novel framework for
detecting PD from online video recordings. The pipeline
addresses some of the issues of real-life noisy recordings by
segmenting and magnifying the relevant parts of the videos.
With a systematic evaluation, we have shown how different
types of segmentation as well as feature representations can
help improve the classification. We are looking forward to
a future when similar frameworks will help facilitate more
frequent and remote monitoring systems for not only PD
patients but also other potential movement disorders.
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